Skip to content

results module

Figures

Class for creating displacement plots.

The final plot is created involving the Plotly library and Dash framework. The graphic representation of the results is automatically launched on the localhost server on port 8050.

The most important plot features:

  1. Visualisation: The default port for displaying results on localhost is 8050. For more than one station, the outputs will be displayed simultaneously on consecutive ports.
  2. Legend: Work for all of the traces and provide a general overview of the results by activating or deactivating groups of data using the legend entities.
  3. Hover: Working within a single trace and providing a detailed overview of the results using the cursor.
  4. Table: To provide the most relevant information about the integration procedure.
  5. Customisation: To provide individual ranges for dates or values:
    • Dates range: adjustable by providing initial and last date or by using the calendar.
    • Horizontal range: adjustable by providing minimum and maximum values.
    • Vertical & LOS range: adjustable by providing minimum and maximum values.
    • Rate range: adjustable by providing minimum and maximum values.
  6. Buttons: To facilitate manipulation between the traces:
    • Restore default: Restore the original ranges of dates or values after user manipulations.
    • Sync ranges: To synchronise the ranges to the same values (by default, the horizontal and vertical ranges of displacement are disjoint).
  7. Mode bar: A default toolbar of the plotly library located in the top right corner:
    • Download plot: To save the plot in svg format after user's manipulations.
    • Edit in Chart Studio: To provide more advanced modifications in the plotly Chart Studio.
    • Zoom: Work for a selected part of the trace. Double click on the trace to zoom back out.
    • Pan: Working within a single trace by moving the current view of the trace.
    • Draw line: Working within a single trace.
    • Draw circle: Working within a single trace.
    • Draw rectangle: Working within a single trace.
    • Erase the active shape: A single-click to activate the shape.
    • Zoom in: Work simultaneously for all of the traces.
    • Zoom out: Work simultaneously for all of the traces.
    • Reset axes: Work simultaneously for all of the traces.
Source code in multidefusion\results.py
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
class Figures:
    """Class for creating displacement plots.

    The final plot is created involving the Plotly library and Dash framework. The graphic representation of the results is automatically launched on the localhost server on port 8050.

    The most important plot features:

    1. Visualisation: The default port for displaying results on localhost is 8050. For more than one station, the outputs will be displayed simultaneously on consecutive ports.
    2. Legend: Work for all of the traces and provide a general overview of the results by activating or deactivating groups of data using the legend entities.
    3. Hover: Working within a single trace and providing a detailed overview of the results using the cursor.
    4. Table: To provide the most relevant information about the integration procedure.
    5. Customisation: To provide individual ranges for dates or values:
        - Dates range: adjustable by providing initial and last date or by using the calendar.
        - Horizontal range: adjustable by providing minimum and maximum values.
        - Vertical & LOS range: adjustable by providing minimum and maximum values.
        - Rate range: adjustable by providing minimum and maximum values.
    6. Buttons: To facilitate manipulation between the traces:
        - Restore default: Restore the original ranges of dates or values after user manipulations.
        - Sync ranges: To synchronise the ranges to the same values (by default, the horizontal and vertical ranges of displacement are disjoint).
    7. Mode bar: A default toolbar of the plotly library located in the top right corner:
        - Download plot: To save the plot in svg format after user's manipulations.
        - Edit in Chart Studio: To provide more advanced modifications in the plotly Chart Studio.
        - Zoom: Work for a selected part of the trace. Double click on the trace to zoom back out.
        - Pan: Working within a single trace by moving the current view of the trace.
        - Draw line: Working within a single trace.
        - Draw circle: Working within a single trace.
        - Draw rectangle: Working within a single trace.
        - Erase the active shape: A single-click to activate the shape.
        - Zoom in: Work simultaneously for all of the traces.
        - Zoom out: Work simultaneously for all of the traces.
        - Reset axes: Work simultaneously for all of the traces.
    """
    def __init__(self, data_integration):
        """
        Initialize Figures object.

        Args:
            data_integration (object): Object containing integrated data.
        """
        self.data_integration = data_integration
        sar_data = self.data_integration.data_dict.get("SAR")
        if sar_data is not None:
            list_of_orbits = list(set(orbit for technique_data in sar_data.values() for orbit in technique_data))
            list_of_orbits = [int(x) for x in list_of_orbits]
            list_of_orbits.sort()
            list_of_orbits = [str(x) for x in list_of_orbits]
            self.orbits = list_of_orbits
            self.number_of_orbits = len(self.orbits)
            self.sar_data_types = list(set([data for data in self.data_integration.data_dict.get("SAR").keys()]))
        else:
            self.orbits = []
            self.number_of_orbits = 0
            self.sar_data_types = []

    @staticmethod
    def find_min_value(*lists):
        """
        Find the minimum value from a set of lists.

        Args:
            *lists: Variable number of lists to find the minimum value from.

        Returns:
            Minimum value from the provided lists.
        """
        if not lists:
            return None
        flattened_list = [item for sublist in lists for item in sublist]
        return min(flattened_list)

    @staticmethod
    def find_max_value(*lists):
        """
        Find the maximum value from a set of lists.

        Args:
            *lists: Variable number of lists to find the maximum value from.

        Returns:
            Maximum value from the provided lists.
        """
        if not lists:
            return None
        flattened_list = [item for sublist in lists for item in sublist]
        return max(flattened_list)

    @staticmethod
    def find_max_total(df):
        """
        Find the maximum value (positive or negative) from each column from a set of dataframe.

        Args:
            df: dataframe

        Returns:
            Maximum value from from each column from a set of dataframe.
        """
        return df.apply(lambda col: col.max() if col.max() >= -col.min() else col.min(), axis=0)

    @staticmethod
    def add_vline(fig, timestamp_min_value, timestamp_max_value, row, col):    
        """
        Add Thicker line for each subplot to indicate the beginning of a year

        Args:
            fig: Figure
            timestamp_min_value: Earliest date
            timestamp_max_value: Lastest date
            row: figure's row
            col: figure's column

        Returns:
            None
        """
        [fig.add_shape(x0=date, x1=date, y0=-10, y1=10, type="line", line=dict(color='lightgray', width=2), layer="below", row=row, col=col) for date in
        pd.date_range(start=timestamp_min_value - relativedelta(years=2),
        end=timestamp_max_value + relativedelta(years=2), freq='YS')]

    def create_displacement_plot(self):
        """
        Create displacement plot using Plotly and Dash.
        """
        # SETTINGS
        print("Development of a figure...")
        additional_range = 0.05  # additional +/-5% of range for plots by x and y axis
        golden_ratio = (1 + 5 ** 0.5) / 2  # for size on y axis
        subplots_postition = {'3*': [[0.019, 0.335], [0.342, 0.658], [0.665, 0.981]],
                              '3' : [[0.000, 0.316], [0.323, 0.639], [0.684, 1.000]],
                              '2' : [[0.1805, 0.4965], [0.5035, 0.8195]],
                              '1' : [[0.323, 0.639]]}

        shift_rate_fig  = 0.007
        shift_disp_fig  = 0.100
        shift_title_fig = 0.003
        shift_legend    = 0.030
        rate_fig_size   = 7/25
        top_limit_plot  = 0.970
        vertical_postition = {}
        vertical_postition['1']  = [top_limit_plot-subplots_postition['3'][0][1]/golden_ratio, top_limit_plot]
        vertical_postition['2']  = [vertical_postition['1'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_rate_fig , vertical_postition['1'][0]-shift_rate_fig]
        vertical_postition['3*'] = [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_disp_fig , vertical_postition['2'][0]-shift_disp_fig]
        vertical_postition['3']  = [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio              -shift_disp_fig , vertical_postition['2'][0]-shift_disp_fig]
        vertical_postition['4']  = [vertical_postition['3'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_rate_fig , vertical_postition['3'][0]-shift_rate_fig]

        table_postition = {'GNSS'  : [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['2'][0]-shift_disp_fig],
                           'DInSAR': [vertical_postition['3*'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['3*'][0]-shift_disp_fig],
                           'SBAS'  : [vertical_postition['3'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['3'][0]-shift_disp_fig],
                           'MSAR'  : [vertical_postition['4'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['4'][0]-shift_disp_fig]}

        shift_dash = 0
        max_len_elements = max(len(lst) for lst in self.data_integration.number_of_SAR_elements.values())
        if max_len_elements > 2:
            shift_dash = (max_len_elements-2)*7

        custom_position = {'GNSS'  : 558,
                           'DInSAR': 754+shift_dash,
                           'SBAS'  : 929+shift_dash,
                           'MSAR'  : 1009+shift_dash}

        rows = 3
        cols = 3
        specs = [[{"type": "xy"}] * cols for _ in range(rows-1)]

        # COLORS BY DATA TYPE
        data_colors = {"forward": "rgb(25, 255, 25)",
                       "backward": "rgb(255, 0, 0)",
                       "GNSS": "rgb(0, 190, 255)",

                       "DInSAR":["#0000ff", '#1322FB', '#2541F8', '#375DF6', '#4976F3', '#5A8CF2', '#6AA0F0', '#7BB1EF', '#8AC0EF', '#9ACDEF'],
                       "PSI":   ["#771e87", '#782390', '#792999', '#7A2FA2', '#7A36AB', '#7A3DB3', '#7A45BA', '#7B54BB', '#7E62BC', '#8370BD'],
                       "SBAS":  ["#7f822f", '#8C8936', '#938B3E', '#9B8D46', '#A28E4E', '#A89057', '#AA9064', '#AC9372', '#AE967E', '#B19C8B'],
                       }

        disp_cols  = ["N", "E", "U"]
        rate_cols  = ["vN", "vE", "vU"]
        disp_units = {"U": "ver", "N": "hor", "E": "hor"}

        # CREATE STORAGE FOR STORE MIN AND MAX FOR SPECIFIC DATA TYPE VALUES
        max_disp = {"ver": [], "hor": []}
        min_disp = {"ver": [], "hor": []}
        max_rate = []
        min_rate = []

        name_forward = "Forward"
        name_backward = "Backward"

        subplot_titles = ["<b>North</b>", "<b>East</b>", "<b>Up</b>"] + [''] * cols

        orbit_titles = ["<b>Orbit " + orbit + "</b>" for orbit in self.orbits]
        empty_titles = [""] * (3 - self.number_of_orbits)

        # CREATE GRID FOR SUBPLOTS AND TITLES
        if "PSI" in self.sar_data_types or "SBAS" in self.sar_data_types:
            rows += 1
            subplot_titles.extend(orbit_titles + empty_titles)

            specs_temp = [[{"type": "xy"}] * self.number_of_orbits + [None] * (3 - self.number_of_orbits)]
            specs.extend(specs_temp)

        if "DInSAR" in self.sar_data_types:
            rows += 1
            specs_temp = [[{"type": "xy"}] * self.number_of_orbits + [None] * (3 - self.number_of_orbits)]
            specs.extend(specs_temp)
            if "PSI" not in self.sar_data_types and "SBAS" not in self.sar_data_types:
                subplot_titles.extend(orbit_titles + empty_titles)
            else:
                subplot_titles.extend([""] * self.number_of_orbits)

        specs_temp = [ [{"type": "table"}] + [None]*2]
        specs.extend(specs_temp)

        # CREATE FIG OBJECT
        fig = sp.make_subplots(rows=rows, cols=cols,
                               specs=specs,
                               subplot_titles=subplot_titles, shared_xaxes=True, )

        # GET TIMESTAMPS FOR GNSS, FORWARD, BACKWARD IF EXIST
        gnss_timestamp = self.data_integration.data_dict['GNSS'].data.index
        forward_timestamp = self.data_integration.forward_df_xe.index
        backward_timestamp = self.data_integration.backward_df_xe.index if self.data_integration.backward_df_xe is not None else None
        timestamp_min_value = self.find_min_value(gnss_timestamp, forward_timestamp,
                                                  backward_timestamp) if backward_timestamp is not None else self.find_min_value(
            gnss_timestamp, forward_timestamp)
        timestamp_max_value = self.find_max_value(gnss_timestamp, forward_timestamp,
                                                  backward_timestamp) if backward_timestamp is not None else self.find_max_value(
            gnss_timestamp, forward_timestamp)

        # CREATE DATES RANGE INCLUDING ADDITIONAL RANGE
        additional_range_abs = additional_range * abs(timestamp_max_value - timestamp_min_value)
        dates_range = [timestamp_min_value - additional_range_abs, timestamp_max_value + additional_range_abs]

        # ITERATION FOR GNSS DATA
        for i, coord in enumerate(disp_cols):
            showlegend = True if i == 0 else False
            disp_gnss = self.data_integration.data_dict['GNSS'].data[coord]
            disp_forward = self.data_integration.forward_df_xe[disp_cols[i]]
            rate_forward = self.data_integration.forward_df_xe[rate_cols[i]] * 1000
            disp_type = disp_units.get(coord, None)
            if disp_type:
                max_disp[disp_type].extend([max(disp_gnss), max(disp_forward)])
                min_disp[disp_type].extend([min(disp_gnss), min(disp_forward)])
            max_rate.extend([max(rate_forward)])
            min_rate.extend([min(rate_forward)])

            fig.add_trace(
                go.Scatter(x=gnss_timestamp, y=disp_gnss, mode='markers', name='', showlegend=showlegend,
                           legendgroup="GNSS", legendgrouptitle_text="GNSS", marker=dict(color=data_colors["GNSS"], size = 8)), 
                row=1, col=i + 1)
            fig.add_trace(
                go.Scatter(x=forward_timestamp, y=disp_forward, mode='lines', name=name_forward, showlegend=showlegend,
                           legendgroup="kalman", legendgrouptitle_text="Kalman",
                           line=dict(width=5, color=data_colors["forward"])), row=1, col=i + 1)
            fig.add_trace(
                go.Scatter(x=forward_timestamp, y=rate_forward, mode='lines', name=name_forward, showlegend=False,
                           legendgroup="kalman", legendgrouptitle_text="Kalman",
                           line=dict(width=5, color=data_colors["forward"])), row=2, col=i + 1)

            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=1, col=i + 1)
            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=2, col=i + 1)

            if self.data_integration.backward_df_xe is not None:
                disp_backward = self.data_integration.backward_df_xe[disp_cols[i]]
                rate_backward = self.data_integration.backward_df_xe[rate_cols[i]] * 1000

                if disp_type:
                    max_disp[disp_type].extend([max(disp_backward)])
                    min_disp[disp_type].extend([min(disp_backward)])
                max_rate.extend([max(rate_backward)])
                min_rate.extend([min(rate_backward)])

                fig.add_trace(go.Scatter(x=backward_timestamp, y=disp_backward, mode='lines', name=name_backward,
                                         showlegend=showlegend, legendgroup="kalman",
                                         line=dict(width=4, color=data_colors["backward"])), row=1, col=i + 1)
                fig.add_trace(go.Scatter(x=backward_timestamp, y=rate_backward, mode='lines', name=name_backward,
                                         showlegend=False, legendgroup="kalman",
                                         line=dict(width=4, color=data_colors["backward"])), row=2, col=i + 1)

        # ITERATION FOR SAR DATA - only DSP
        if self.data_integration.data_dict.get('SAR') is not None:
            for technique, data in self.data_integration.data_dict.get('SAR').items():
                row = 3
                if technique == "DInSAR" and ("SBAS" in self.sar_data_types or "PSI" in self.sar_data_types):
                    row = 4
                if technique == "DInSAR":
                    for orbit in set(self.orbits).difference(set(data.keys())):
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        fig.add_trace(
                            go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                       showlegend=False), row=row, col=col)
                        self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                else:
                    for orbit in set(self.orbits).difference(set(data.keys())):
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        fig.add_trace(
                            go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                       showlegend=False), row=row, col=col)
                        self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                if isinstance(data, dict):
                    inner_keys = {}
                    for orbit, orbit_data in data.items():
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        if isinstance(orbit_data, dict):

                            if len(self.data_integration.number_of_SAR_elements[technique]) == 1:
                                color_index = [0]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 2:
                                color_index = [0, 4]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 3:
                                color_index = [0, 4, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 4:
                                color_index = [0, 2, 4, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 5:
                                color_index = [0, 2, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 6:
                                color_index = [0, 1, 2, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 7:
                                color_index = [0, 1, 2, 3, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 8:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 9:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 7, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 10:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

                            for _, (subkey, subdata) in enumerate(orbit_data.items()):
                                if subkey in inner_keys.keys():
                                    showlegend = False
                                else:
                                    showlegend = True
                                    inner_keys[subkey]=color_index[len(inner_keys)]

                                color_for_data = data_colors[subdata.type][inner_keys[subkey]]

                                rates = 1000 if subdata.type == "DInSAR" else 1
                                if subdata.type == "DInSAR":
                                    max_rate.extend([max(subdata.data["DSP"] * rates)])
                                    min_rate.extend([min(subdata.data["DSP"] * rates)])
                                else:
                                    max_disp["ver"].extend([max(subdata.data["DSP"] * rates)])
                                    min_disp["ver"].extend([min(subdata.data["DSP"] * rates)])

                                fig.add_trace(
                                    go.Scatter(x=subdata.data.index, y=subdata.data["DSP"] * rates, mode='markers',
                                               name=subdata.sublabel,
                                               showlegend=showlegend, legendgroup=subdata.type,
                                               legendgrouptitle_text=subdata.type,
                                               marker=dict(color=color_for_data, size = 8)), row=row, col=col)
                                self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                        else:
                            showlegend = True if self.orbits.index(orbit) == 0 else False
                            rates = 1000 if orbit_data.type == "DInSAR" else 1
                            if orbit_data.type == "DInSAR":
                                max_rate.extend([max(orbit_data.data["DSP"] * rates)])
                                min_rate.extend([min(orbit_data.data["DSP"] * rates)])
                            else:
                                max_disp["ver"].extend([max(orbit_data.data["DSP"] * rates)])
                                min_disp["ver"].extend([min(orbit_data.data["DSP"] * rates)])

                            fig.add_trace(
                                go.Scatter(x=orbit_data.data.index, y=orbit_data.data["DSP"] * rates, mode='markers',
                                           name='',
                                           showlegend=showlegend, legendgroup=orbit_data.type,
                                           legendgrouptitle_text=orbit_data.type,
                                           marker=dict(color=data_colors[orbit_data.type][0], size = 8)), row=row, col=col)
                            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                    if technique == "DInSAR":
                        for orbit in set(self.orbits).difference(set(data.keys())):
                            col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                            fig.add_trace(
                                go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                           showlegend=False), row=row, col=col)
                            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
        if self.data_integration.mean_data_dict.get("DInSAR") is not None:
            row = 4 if ("SBAS" in self.sar_data_types or "PSI" in self.sar_data_types) else 3
            for orbit, orbit_data in self.data_integration.mean_data_dict.get("DInSAR").items():
                col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1

                max_rate.extend([max(orbit_data['forward_mean'])])
                min_rate.extend([min(orbit_data['forward_mean'])])

                fig.add_trace(go.Scatter(x=orbit_data['forward_mean'].index, y=orbit_data['forward_mean'], mode='lines',
                                         name=name_forward, showlegend=False, legendgroup="kalman",
                                         line=dict(width=5, color=data_colors["forward"])), row=row, col=col)
                if orbit_data.get('backward_mean') is not None:
                    max_rate.extend([max(orbit_data['backward_mean'])])
                    min_rate.extend([min(orbit_data['backward_mean'])])

                    fig.add_trace(
                        go.Scatter(x=orbit_data['backward_mean'].index, y=orbit_data['backward_mean'], mode='lines',
                                   name=name_backward, showlegend=False, legendgroup="kalman",
                                   line=dict(width=4, color=data_colors["backward"])), row=row, col=col)

        if self.data_integration.mean_data_dict.get("SAR_SBAS_PSI_MEAN") is not None:
            row = 3
            for orbit, orbit_data in self.data_integration.mean_data_dict.get("SAR_SBAS_PSI_MEAN").items():
                col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1

                max_disp["ver"].extend([max(orbit_data['forward_mean'].dropna())])
                min_disp["ver"].extend([min(orbit_data['forward_mean'].dropna())])

                fig.add_trace(
                    go.Scatter(x=orbit_data['forward_mean'].dropna().index, y=orbit_data['forward_mean'].dropna(),
                               mode='lines', name=name_forward, showlegend=False, legendgroup="kalman",
                               line=dict(width=5, color=data_colors["forward"])), row=row, col=col)

                if orbit_data.get('backward_mean') is not None:
                    max_disp["ver"].extend([max(orbit_data['backward_mean'].dropna())])
                    min_disp["ver"].extend([min(orbit_data['backward_mean'].dropna())])

                    fig.add_trace(
                        go.Scatter(x=orbit_data['backward_mean'].dropna().index, y=orbit_data['backward_mean'].dropna(),
                                   mode='lines', name=name_backward, showlegend=False, legendgroup="kalman",
                                   line=dict(width=4, color=data_colors["backward"])), row=row, col=col)

        # ORDER OF TRACES FOR LEGEND
        new_data = [trace for trace in fig.data if trace.name != name_forward] + [trace for trace in fig.data if
                                                                                  trace.name == name_forward]
        new_data = [trace for trace in new_data if trace.name != name_backward] + [trace for trace in new_data if
                                                                                   trace.name == name_backward]
        fig.data = new_data

        # CREATE Y RANGE
        max_disp_ver = self.find_max_value(max_disp["ver"])
        max_disp_hor = self.find_max_value(max_disp["hor"])
        min_disp_ver = self.find_min_value(min_disp["ver"])
        min_disp_hor = self.find_min_value(min_disp["hor"])

        min_rate = self.find_min_value(min_rate)
        max_rate = self.find_max_value(max_rate)

        range_ver = [min_disp_ver - additional_range * abs(max_disp_ver - min_disp_ver),
                     max_disp_ver + additional_range * abs(max_disp_ver - min_disp_ver)]
        range_hor = [min_disp_hor - additional_range * abs(max_disp_hor - min_disp_hor),
                     max_disp_hor + additional_range * abs(max_disp_hor - min_disp_hor)]
        range_rate = [min_rate - additional_range * abs(max_rate - min_rate),
                      max_rate + additional_range * abs(max_rate - min_rate)]

        min_range_value = 0.05
        if min(range_ver[0], range_hor[0]) > -min_range_value and max(range_ver[1], range_hor[1]) < min_range_value:
            range_ver = [-min_range_value, min_range_value]
            range_hor = [-min_range_value, min_range_value]

        # UPDATE X AND Y RANGE FOR GNSS DISPLACEMENT    
        fig.update_yaxes(range=range_hor,   row=1, col=1)
        fig.update_yaxes(range=range_hor,   row=1, col=2)
        fig.update_yaxes(range=range_ver,   row=1, col=3)
        fig.update_xaxes(range=dates_range, row=1)

        # UPDATE X AND Y RANGE FOR GNSS RATE
        fig.update_xaxes(range=dates_range, row=2)
        fig.update_yaxes(range=range_rate,  row=2)

        # UPDATE X AND Y RANGE FOR DInSAR OR PSI& SBAS
        fig.update_xaxes(range=dates_range, row=3)
        if rows == 4 and "DInSAR" in self.sar_data_types: 
            fig.update_yaxes(range=range_rate, row=3)
        else:
            fig.update_yaxes(range=range_ver,  row=3)

        # UPDATE X AND Y RANGE FOR DInSAR WITH PSI& SBAS
        fig.update_xaxes(range=dates_range, row=4)
        fig.update_yaxes(range=range_rate,  row=4)


        # UPDATE EVERY ANNOTATIONS -> FONT SIZE
        fig.update_annotations(font_size=24, font_color = 'black')

        layout_settings = {
            'title_text': f"MultiDEFusion: <b>{self.data_integration.station}</b>",
            'font': dict(family='Helvetica', size=20, color = 'black'),
            'height': 1400,
            'width': 1600,
            'showlegend': True,
            'margin' : dict(r=10,b=10),
            'legend': dict(orientation='h',
                           # groupclick="toggleitem",
                           itemsizing='constant',
                           bordercolor='black',
                           borderwidth=1,
                           yanchor="bottom",
                           y=vertical_postition['1'][1]+shift_legend,
                           xanchor="right",
                           x=1),
            'plot_bgcolor': 'white',
        }

        axis_settings = {
            'gridcolor': 'lightgray',
            'ticks': 'inside',
            'linecolor': 'black',
            'mirror': 'ticks',
            'color': 'black',
            'minor': dict(gridcolor='lightgray', gridwidth=0.1, ticks='inside', tickcolor='black'),
            'automargin': 'height+width+left+right',    
        }

        # UPDATE POSITION AND SETTINGS FOR GNSS DISPLACEMENT
        for i in range(1, 4):
            layout_settings[f'xaxis{i}'] = dict(domain=subplots_postition["3"][i - 1], showticklabels=False, hoverformat = '%d %b %Y',
                                                **axis_settings)
            layout_settings[f'yaxis{i}'] = dict(
                domain=vertical_postition['1'],
                title='<b>Displacement [m]</b>' if i == 1 else '',
                showticklabels=True if i == 1 or i == 3 else False,
                tickformat='.2f',
                zeroline=True,
                zerolinewidth=2,
                zerolinecolor='lightgray',
                hoverformat = '.3f',
                **axis_settings
            )
        # UPDATE POSITION AND SETTINGS FOR GNSS RATE
        for i in range(1, 4):
            layout_settings[f'xaxis{i + 3}'] = dict(domain=subplots_postition["3"][i - 1],
                                                    showticklabels=True, tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
            layout_settings[f'yaxis{i + 3}'] = dict(
                domain=vertical_postition['2'],
                title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                showticklabels=True if i == 1 or i == 3 else False,
                tickformat='.2f',
                zeroline=True,
                zerolinewidth=2,
                zerolinecolor='lightgray',
                hoverformat = '.1f',
                **axis_settings
            )

        if self.number_of_orbits == 3:
            subplots_postition_orbits = str(self.number_of_orbits) + "*"
        else:
            subplots_postition_orbits = str(self.number_of_orbits)

        table_vertical  = table_postition['GNSS']
        table_title_pos = shift_title_fig*5
        picker_position = custom_position['GNSS']

        if rows == 4:
            if "DInSAR" in self.sar_data_types and len(self.sar_data_types) == 1:
                table_vertical  = table_postition['DInSAR']
                table_title_pos = shift_title_fig*5
                picker_position = custom_position['DInSAR']
                for i in range(1, len(self.orbits) + 1):
                    layout_settings[f'xaxis{i + 6}'] = dict(
                        domain=subplots_postition[subplots_postition_orbits][i - 1],
                        tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                    layout_settings[f'yaxis{i + 6}'] = dict(
                        domain=vertical_postition['3*'],
                        title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                        showticklabels=True if i == 1 else False,
                        tickformat='.2f',
                        zeroline=True,
                        zerolinewidth=2,
                        zerolinecolor='lightgray',
                        hoverformat = '.1f',
                        **axis_settings
                    )

        if rows == 4:
            if "DInSAR" not in self.sar_data_types and len(self.sar_data_types) > 0:
                table_vertical  = table_postition['SBAS']
                table_title_pos = shift_title_fig
                picker_position = custom_position['SBAS']
                for i in range(1, len(self.orbits) + 1):
                    layout_settings[f'xaxis{i + 6}'] = dict(
                        domain=subplots_postition[subplots_postition_orbits][i - 1],
                        tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                    layout_settings[f'yaxis{i + 6}'] = dict(
                        domain=vertical_postition['3'],
                        title='<b>Displacement [m]</b>' if i == 1 else '',
                        showticklabels=True if i == 1 else False,
                        tickformat='.2f',
                        zeroline=True,
                        zerolinewidth=2,
                        zerolinecolor='lightgray',
                        hoverformat = '.3f',
                        **axis_settings
                    )

        if rows == 5:
            table_vertical  = table_postition['MSAR']
            table_title_pos = shift_title_fig
            picker_position = custom_position['MSAR']
            for i in range(1, len(self.orbits) + 1):
                layout_settings[f'xaxis{i + 6}'] = dict(domain=subplots_postition[subplots_postition_orbits][i - 1],
                                                        showticklabels=False, hoverformat = '%d %b %Y', **axis_settings)
                layout_settings[f'yaxis{i + 6}'] = dict(
                    domain=vertical_postition['3'],
                    title='<b>Displacement [m]</b>' if i == 1 else '',
                    showticklabels=True if i == 1 else False,
                    tickformat='.2f',
                    zeroline=True,
                    zerolinewidth=2,            
                    zerolinecolor='lightgray',
                    hoverformat = '.3f',
                    **axis_settings
                )
                layout_settings[f'xaxis{i + 6 + len(self.orbits)}'] = dict(
                    domain=subplots_postition[subplots_postition_orbits][i - 1],
                    tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                layout_settings[f'yaxis{i + 6 + len(self.orbits)}'] = dict(
                    domain=vertical_postition['4'],
                    title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                    showticklabels=True if i == 1 else False,
                    tickformat='.2f',
                    zeroline=True,
                    zerolinewidth=2,
                    zerolinecolor='lightgray',
                    hoverformat = '.1f',
                    **axis_settings
                )

        fig.update_layout(**layout_settings)

        fig.update_layout(xaxis=dict(matches='x'),
                          xaxis4=dict(matches='x'),
                          xaxis2=dict(matches='x2'),
                          xaxis5=dict(matches='x2'),
                          xaxis3=dict(matches='x3'),
                          xaxis6=dict(matches='x3'),
                          hovermode='x unified',
                          )

        fig.update_traces(hovertemplate='%{y} %{xother}')

        if self.data_integration.backward_df_xe is not None:
            max_total_values = self.find_max_total(self.data_integration.backward_df_xe)
            mean_rate = self.data_integration.backward_df_xe.mean()
            kalman_col = '  Kalman<br>Backward'
        else:
            kalman_col = ' Kalman<br>Forward'
            max_total_values = self.find_max_total(self.data_integration.forward_df_xe)
            mean_rate = self.data_integration.forward_df_xe.mean()


        fig.add_trace(go.Table(
            header=dict(values=[f"{kalman_col}", '     Max<br>  DEF [m]',  'Mean rate<br>  [m/year]'],
                        align='center',
                        fill_color = 'rgb(189, 215, 231)',
                        line_color='black',
                        font = dict(color = 'black', size = 24)),
            cells =dict(values=[['North', 'East', 'Up'], max_total_values[disp_cols].apply(lambda x: f'{x:.3f}'), (mean_rate[rate_cols]*365.25).apply(lambda x: f'{x:.3f}')], 
                        align='center', 
                        height=41.5,
                        fill_color = 'white',
                        line_color='black',
                        font = dict(color = 'black', size = 24))
            ), row=rows, col=1)

        fig.update_traces(
            domain={'y': table_vertical, 'x': subplots_postition['3'][1]},
            selector={'type': 'table'})

        for annotation, domain in zip(fig['layout']['annotations'][:3], subplots_postition["3"]):
            annotation['x'] = (domain[0] + domain[1]) / 2
            annotation['y'] = vertical_postition['1'][1]+shift_title_fig

        if self.number_of_orbits == 3:
            subplots_pos = subplots_postition["3*"]
        elif self.number_of_orbits in [1, 2]:
            subplots_pos = subplots_postition[str(self.number_of_orbits)]

        if rows > 3:
            for annotation, domain in zip(fig['layout']['annotations'][3:], subplots_pos):
                annotation['x'] = (domain[0] + domain[1]) / 2
                annotation['y'] = vertical_postition['3'][1]+shift_title_fig

        fig.add_annotation(
            x = mean(subplots_postition['3'][1]),
            y = table_vertical[1]+table_title_pos,
            xref = "paper",
            yref = "paper",
            showarrow=False,
            font_size = 25,
            font_color = 'black',
            text = "<b>Relevant values</b>")

        fig.add_annotation(
            x = mean(subplots_postition['3'][1]),
            y = 0.005,
            xref = "paper",
            yref = "paper",
            showarrow=False,
            font_family = 'Helvetica',
            font_size = 15,
            font_color = 'black',
            text = "The Kalman filter displacements and rates shown for InSAR orbits in the Line of Sight (LOS) domain were determined based on the mean heading and incidence angle values.")

        #DASH PART
        app = dash.Dash(__name__)
        container1 = html.Div([
            dcc.Graph(
                id='subplot-graph',
                figure = fig,
                config = {
                    'toImageButtonOptions': {'format': 'svg', 'filename': 'MultiDEFusion_'+self.data_integration.station},
                    'displaylogo': False,
                    'showEditInChartStudio': True,
                    'plotlyServerURL': "https://chart-studio.plotly.com",
                    'modeBarButtonsToRemove': ['select', 'lasso2d', 'autoScale'],
                    'modeBarButtonsToAdd': ['drawline', 'drawcircle', 'drawrect', 'eraseshape', 'sendDataToCloud']
                    }
                ),
            ])

        container2 = html.Div([
            html.H2('Customise dates range',
                    style={'fontsize': '25px',
                           'margin-bottom': '5px',
                           'margin-left': '65px',}),

		    dcc.DatePickerRange(
				id='date_range',
				display_format='DD/MM/YYYY',
				show_outside_days = True,
				start_date=dates_range[0],
				end_date=dates_range[1],
                number_of_months_shown=2,
                style={'border': '2px solid black',
                       'margin-bottom': '10px',
                       'vertical-align': 'middle',
                       'display': 'inline-block'},
			),

            html.Button('Restore default',
                        id='reset_dates',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '45px', 
                               'width': '100px', 
                               'margin-left': '10px',
                               'margin-bottom': '10px',
                               'vertical-align': 'middle',
                               'display': 'inline-block'}),

            html.Div(id='output_x_range',
                     style={'fontsize': '15px',
                            'color': 'red'}),

            html.H2('Customise values range',
                    style={'fontsize': '25px',
                           'margin-bottom': '5px',
                           'margin-left': '60px'}),

            html.Div([
            dcc.Dropdown(
                id = 'show_or_hide',
                options=[
                    {'label': 'Horizontal range [m]', 'value': 'hor'},
                    {'label': 'Vertical & LOS range [m]', 'value': 'ver'},
                    {'label': 'Rate range [mm/day]', 'value': 'rate'}],
                value = 'hor',
                clearable = False,
                style={'width': '286px',
                       'font-size': '20px', 
                       'border': '0.2px solid black',
                       'border-radius': '0',
                       'height': '40px', 
                       'vertical-align': 'middle',
                       'display': 'inline-block'},
            ),

            html.Button('Sync ranges',
                        id='fit_ranges',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '38px', 
                               'width': '100px',
                               'margin-left': '10px',
                               'vertical-align': 'middle',
                               'display': 'inline-block'}
            ),
            ]),

            html.Div([
                html.Div(id = 'hor_options', children=[
                dcc.Input(
                id = 'hor_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_hor[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'hor_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_hor[1])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                )
            ],
            style={'display': 'block',
                   'margin-top': '5px',
                   'margin-bottom': '10px'},
            ),

            html.Div(id = 'ver_options', children=[
                dcc.Input(
                id = 'ver_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_ver[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'ver_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_ver[1])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                )
            ],
            style={'display': 'block',
                   'margin-bottom': '10px'},
            ),

            html.Div(id = 'rate_options', children=[
                dcc.Input(
                id = 'rate_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.1,
                value = float("{:.1f}".format(range_rate[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'rate_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.1,
                value = float("{:.1f}".format(range_rate[1])),
                style = {'font-size': '17px', 
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

            ],
            style={'display': 'block',
                   'margin-bottom': '10px'},
            )
            ], style={'display': 'inline-block',
                      'vertical-align': 'middle'}),


            html.Button('Restore default',
                        id='reset_values',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '38px', 
                               'width': '100px',
                               'margin-left': '10px',
                               'display': 'inline-block',
                               'vertical-align': 'middle',}
            ),


            html.Div(id='output_y_range',
                     style={'fontsize': '15px',
                            'color': 'red'}
                     ),
        ], 
        style={'position': 'absolute', 
               'top': f'{picker_position}px', 
               'left': '145px', 
               'width': 'fit-content',
               'fontFamily': 'Helvetica',
               'color': 'black', 
               }
        )

        app.layout = html.Div([container1, container2])

        @app.callback(
            Output('hor_options', 'style'),
            Output('ver_options', 'style'),
            Output('rate_options', 'style'),
            Input('show_or_hide', 'value'))

        def show_hide_element(visibility_state):
            if visibility_state == 'hor':
                return {'display': 'block'}, {'display': 'none'}, {'display': 'none'}
            elif visibility_state == 'ver':
                return {'display': 'none'}, {'display': 'block'}, {'display': 'none'}
            else:
                return {'display': 'none'}, {'display': 'none'}, {'display': 'block'}

        @app.callback(
           Output('subplot-graph', 'figure'),
           Output('output_x_range', 'children'),
           Output('output_y_range', 'children'),
           [Input('date_range', 'start_date'),
            Input('date_range', 'end_date'),
            Input('hor_min', 'value'), 
            Input('hor_max', 'value'),
            Input('ver_min', 'value'), 
            Input('ver_max', 'value'),
            Input('rate_min', 'value'), 
            Input('rate_max', 'value')]
           )

        def update_subplot(start_date, end_date, hor_min, hor_max, ver_min, ver_max, rate_min, rate_max):

            warning_dates = None
            if end_date <= start_date and end_date is not None and start_date is not None:
                warning_dates = 'The end date must be greater than the start date!'
            if warning_dates == None:
                fig.update_xaxes(range=(start_date, end_date))

            warning_values = None
            if hor_min is not None and hor_max is not None and hor_max <= hor_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if ver_min is not None and ver_max is not None and ver_max <= ver_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if rate_min is not None and rate_max is not None and rate_max <= rate_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if warning_values == None:                
                # UPDATE Y RANGE FOR GNSS DISPLACEMENT    
                fig.update_yaxes(range=[hor_min, hor_max], row=1, col=1)
                fig.update_yaxes(range=[hor_min, hor_max], row=1, col=2)
                fig.update_yaxes(range=[ver_min, ver_max], row=1, col=3)

                # UPDATE X AND Y RANGE FOR GNSS RATE
                fig.update_yaxes(range=[rate_min, rate_max], row=2)

                # UPDATE X AND Y RANGE FOR DInSAR OR PSI & SBAS
                if rows == 4 and "DInSAR" in self.sar_data_types: 
                    fig.update_yaxes(range=[rate_min, rate_max], row=3)
                else:
                    fig.update_yaxes(range=[ver_min, ver_max], row=3)

                # UPDATE X AND Y RANGE FOR DInSAR WITH PSI& SBAS
                fig.update_yaxes(range=[rate_min, rate_max], row=4)

            return fig, warning_dates, warning_values


        @app.callback(
            Output('date_range', 'start_date'),
            Output('date_range', 'end_date'),
            Input('reset_dates', 'n_clicks')
        )

        def reset_date_range(n_clicks):
            return dates_range[0], dates_range[1]

        @app.callback(
          [Output('hor_min', 'value'), 
            Output('hor_max', 'value'),
            Output('ver_min', 'value'), 
            Output('ver_max', 'value'),
            Output('rate_min', 'value'), 
            Output('rate_max', 'value')],
            Input('reset_values', 'n_clicks'),
            Input('fit_ranges', 'n_clicks'),
            prevent_initial_call=True
          )

        def reset_fit_range(btn1, btn2):
            min_range = float("{:.3f}".format(min(range_ver[0], range_hor[0])))
            max_range = float("{:.3f}".format(max(range_ver[1], range_hor[1])))
            if 'reset_values' == ctx.triggered_id:
                return float("{:.3f}".format(range_hor[0])), float("{:.3f}".format(range_hor[1])), float("{:.3f}".format(range_ver[0])), float("{:.3f}".format(range_ver[1])),  float("{:.1f}".format(range_rate[0])), float("{:.1f}".format(range_rate[1]))
            if 'fit_ranges' == ctx.triggered_id:
                return min_range, max_range, min_range, max_range, float("{:.1f}".format(range_rate[0])), float("{:.1f}".format(range_rate[1]))


        print("MultiDEFusion procedure accomplished.\n")
        if __name__ == 'multidefusion.results':
            app.run_server(debug=True, host="localhost", port=self.data_integration.port, use_reloader=False);
            webbrowser.open(f'http://localhost:{self.data_integration.port}')
            print("___________________________________________________________")

__init__(data_integration)

Initialize Figures object.

Parameters:

Name Type Description Default
data_integration object

Object containing integrated data.

required
Source code in multidefusion\results.py
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
def __init__(self, data_integration):
    """
    Initialize Figures object.

    Args:
        data_integration (object): Object containing integrated data.
    """
    self.data_integration = data_integration
    sar_data = self.data_integration.data_dict.get("SAR")
    if sar_data is not None:
        list_of_orbits = list(set(orbit for technique_data in sar_data.values() for orbit in technique_data))
        list_of_orbits = [int(x) for x in list_of_orbits]
        list_of_orbits.sort()
        list_of_orbits = [str(x) for x in list_of_orbits]
        self.orbits = list_of_orbits
        self.number_of_orbits = len(self.orbits)
        self.sar_data_types = list(set([data for data in self.data_integration.data_dict.get("SAR").keys()]))
    else:
        self.orbits = []
        self.number_of_orbits = 0
        self.sar_data_types = []

add_vline(fig, timestamp_min_value, timestamp_max_value, row, col) staticmethod

Add Thicker line for each subplot to indicate the beginning of a year

Parameters:

Name Type Description Default
fig

Figure

required
timestamp_min_value

Earliest date

required
timestamp_max_value

Lastest date

required
row

figure's row

required
col

figure's column

required

Returns:

Type Description

None

Source code in multidefusion\results.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
@staticmethod
def add_vline(fig, timestamp_min_value, timestamp_max_value, row, col):    
    """
    Add Thicker line for each subplot to indicate the beginning of a year

    Args:
        fig: Figure
        timestamp_min_value: Earliest date
        timestamp_max_value: Lastest date
        row: figure's row
        col: figure's column

    Returns:
        None
    """
    [fig.add_shape(x0=date, x1=date, y0=-10, y1=10, type="line", line=dict(color='lightgray', width=2), layer="below", row=row, col=col) for date in
    pd.date_range(start=timestamp_min_value - relativedelta(years=2),
    end=timestamp_max_value + relativedelta(years=2), freq='YS')]

create_displacement_plot()

Create displacement plot using Plotly and Dash.

Source code in multidefusion\results.py
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
    def create_displacement_plot(self):
        """
        Create displacement plot using Plotly and Dash.
        """
        # SETTINGS
        print("Development of a figure...")
        additional_range = 0.05  # additional +/-5% of range for plots by x and y axis
        golden_ratio = (1 + 5 ** 0.5) / 2  # for size on y axis
        subplots_postition = {'3*': [[0.019, 0.335], [0.342, 0.658], [0.665, 0.981]],
                              '3' : [[0.000, 0.316], [0.323, 0.639], [0.684, 1.000]],
                              '2' : [[0.1805, 0.4965], [0.5035, 0.8195]],
                              '1' : [[0.323, 0.639]]}

        shift_rate_fig  = 0.007
        shift_disp_fig  = 0.100
        shift_title_fig = 0.003
        shift_legend    = 0.030
        rate_fig_size   = 7/25
        top_limit_plot  = 0.970
        vertical_postition = {}
        vertical_postition['1']  = [top_limit_plot-subplots_postition['3'][0][1]/golden_ratio, top_limit_plot]
        vertical_postition['2']  = [vertical_postition['1'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_rate_fig , vertical_postition['1'][0]-shift_rate_fig]
        vertical_postition['3*'] = [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_disp_fig , vertical_postition['2'][0]-shift_disp_fig]
        vertical_postition['3']  = [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio              -shift_disp_fig , vertical_postition['2'][0]-shift_disp_fig]
        vertical_postition['4']  = [vertical_postition['3'][0]-subplots_postition['3'][0][1]/golden_ratio*rate_fig_size-shift_rate_fig , vertical_postition['3'][0]-shift_rate_fig]

        table_postition = {'GNSS'  : [vertical_postition['2'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['2'][0]-shift_disp_fig],
                           'DInSAR': [vertical_postition['3*'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['3*'][0]-shift_disp_fig],
                           'SBAS'  : [vertical_postition['3'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['3'][0]-shift_disp_fig],
                           'MSAR'  : [vertical_postition['4'][0]-subplots_postition['3'][0][1]/golden_ratio-shift_disp_fig, vertical_postition['4'][0]-shift_disp_fig]}

        shift_dash = 0
        max_len_elements = max(len(lst) for lst in self.data_integration.number_of_SAR_elements.values())
        if max_len_elements > 2:
            shift_dash = (max_len_elements-2)*7

        custom_position = {'GNSS'  : 558,
                           'DInSAR': 754+shift_dash,
                           'SBAS'  : 929+shift_dash,
                           'MSAR'  : 1009+shift_dash}

        rows = 3
        cols = 3
        specs = [[{"type": "xy"}] * cols for _ in range(rows-1)]

        # COLORS BY DATA TYPE
        data_colors = {"forward": "rgb(25, 255, 25)",
                       "backward": "rgb(255, 0, 0)",
                       "GNSS": "rgb(0, 190, 255)",

                       "DInSAR":["#0000ff", '#1322FB', '#2541F8', '#375DF6', '#4976F3', '#5A8CF2', '#6AA0F0', '#7BB1EF', '#8AC0EF', '#9ACDEF'],
                       "PSI":   ["#771e87", '#782390', '#792999', '#7A2FA2', '#7A36AB', '#7A3DB3', '#7A45BA', '#7B54BB', '#7E62BC', '#8370BD'],
                       "SBAS":  ["#7f822f", '#8C8936', '#938B3E', '#9B8D46', '#A28E4E', '#A89057', '#AA9064', '#AC9372', '#AE967E', '#B19C8B'],
                       }

        disp_cols  = ["N", "E", "U"]
        rate_cols  = ["vN", "vE", "vU"]
        disp_units = {"U": "ver", "N": "hor", "E": "hor"}

        # CREATE STORAGE FOR STORE MIN AND MAX FOR SPECIFIC DATA TYPE VALUES
        max_disp = {"ver": [], "hor": []}
        min_disp = {"ver": [], "hor": []}
        max_rate = []
        min_rate = []

        name_forward = "Forward"
        name_backward = "Backward"

        subplot_titles = ["<b>North</b>", "<b>East</b>", "<b>Up</b>"] + [''] * cols

        orbit_titles = ["<b>Orbit " + orbit + "</b>" for orbit in self.orbits]
        empty_titles = [""] * (3 - self.number_of_orbits)

        # CREATE GRID FOR SUBPLOTS AND TITLES
        if "PSI" in self.sar_data_types or "SBAS" in self.sar_data_types:
            rows += 1
            subplot_titles.extend(orbit_titles + empty_titles)

            specs_temp = [[{"type": "xy"}] * self.number_of_orbits + [None] * (3 - self.number_of_orbits)]
            specs.extend(specs_temp)

        if "DInSAR" in self.sar_data_types:
            rows += 1
            specs_temp = [[{"type": "xy"}] * self.number_of_orbits + [None] * (3 - self.number_of_orbits)]
            specs.extend(specs_temp)
            if "PSI" not in self.sar_data_types and "SBAS" not in self.sar_data_types:
                subplot_titles.extend(orbit_titles + empty_titles)
            else:
                subplot_titles.extend([""] * self.number_of_orbits)

        specs_temp = [ [{"type": "table"}] + [None]*2]
        specs.extend(specs_temp)

        # CREATE FIG OBJECT
        fig = sp.make_subplots(rows=rows, cols=cols,
                               specs=specs,
                               subplot_titles=subplot_titles, shared_xaxes=True, )

        # GET TIMESTAMPS FOR GNSS, FORWARD, BACKWARD IF EXIST
        gnss_timestamp = self.data_integration.data_dict['GNSS'].data.index
        forward_timestamp = self.data_integration.forward_df_xe.index
        backward_timestamp = self.data_integration.backward_df_xe.index if self.data_integration.backward_df_xe is not None else None
        timestamp_min_value = self.find_min_value(gnss_timestamp, forward_timestamp,
                                                  backward_timestamp) if backward_timestamp is not None else self.find_min_value(
            gnss_timestamp, forward_timestamp)
        timestamp_max_value = self.find_max_value(gnss_timestamp, forward_timestamp,
                                                  backward_timestamp) if backward_timestamp is not None else self.find_max_value(
            gnss_timestamp, forward_timestamp)

        # CREATE DATES RANGE INCLUDING ADDITIONAL RANGE
        additional_range_abs = additional_range * abs(timestamp_max_value - timestamp_min_value)
        dates_range = [timestamp_min_value - additional_range_abs, timestamp_max_value + additional_range_abs]

        # ITERATION FOR GNSS DATA
        for i, coord in enumerate(disp_cols):
            showlegend = True if i == 0 else False
            disp_gnss = self.data_integration.data_dict['GNSS'].data[coord]
            disp_forward = self.data_integration.forward_df_xe[disp_cols[i]]
            rate_forward = self.data_integration.forward_df_xe[rate_cols[i]] * 1000
            disp_type = disp_units.get(coord, None)
            if disp_type:
                max_disp[disp_type].extend([max(disp_gnss), max(disp_forward)])
                min_disp[disp_type].extend([min(disp_gnss), min(disp_forward)])
            max_rate.extend([max(rate_forward)])
            min_rate.extend([min(rate_forward)])

            fig.add_trace(
                go.Scatter(x=gnss_timestamp, y=disp_gnss, mode='markers', name='', showlegend=showlegend,
                           legendgroup="GNSS", legendgrouptitle_text="GNSS", marker=dict(color=data_colors["GNSS"], size = 8)), 
                row=1, col=i + 1)
            fig.add_trace(
                go.Scatter(x=forward_timestamp, y=disp_forward, mode='lines', name=name_forward, showlegend=showlegend,
                           legendgroup="kalman", legendgrouptitle_text="Kalman",
                           line=dict(width=5, color=data_colors["forward"])), row=1, col=i + 1)
            fig.add_trace(
                go.Scatter(x=forward_timestamp, y=rate_forward, mode='lines', name=name_forward, showlegend=False,
                           legendgroup="kalman", legendgrouptitle_text="Kalman",
                           line=dict(width=5, color=data_colors["forward"])), row=2, col=i + 1)

            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=1, col=i + 1)
            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=2, col=i + 1)

            if self.data_integration.backward_df_xe is not None:
                disp_backward = self.data_integration.backward_df_xe[disp_cols[i]]
                rate_backward = self.data_integration.backward_df_xe[rate_cols[i]] * 1000

                if disp_type:
                    max_disp[disp_type].extend([max(disp_backward)])
                    min_disp[disp_type].extend([min(disp_backward)])
                max_rate.extend([max(rate_backward)])
                min_rate.extend([min(rate_backward)])

                fig.add_trace(go.Scatter(x=backward_timestamp, y=disp_backward, mode='lines', name=name_backward,
                                         showlegend=showlegend, legendgroup="kalman",
                                         line=dict(width=4, color=data_colors["backward"])), row=1, col=i + 1)
                fig.add_trace(go.Scatter(x=backward_timestamp, y=rate_backward, mode='lines', name=name_backward,
                                         showlegend=False, legendgroup="kalman",
                                         line=dict(width=4, color=data_colors["backward"])), row=2, col=i + 1)

        # ITERATION FOR SAR DATA - only DSP
        if self.data_integration.data_dict.get('SAR') is not None:
            for technique, data in self.data_integration.data_dict.get('SAR').items():
                row = 3
                if technique == "DInSAR" and ("SBAS" in self.sar_data_types or "PSI" in self.sar_data_types):
                    row = 4
                if technique == "DInSAR":
                    for orbit in set(self.orbits).difference(set(data.keys())):
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        fig.add_trace(
                            go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                       showlegend=False), row=row, col=col)
                        self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                else:
                    for orbit in set(self.orbits).difference(set(data.keys())):
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        fig.add_trace(
                            go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                       showlegend=False), row=row, col=col)
                        self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                if isinstance(data, dict):
                    inner_keys = {}
                    for orbit, orbit_data in data.items():
                        col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                        if isinstance(orbit_data, dict):

                            if len(self.data_integration.number_of_SAR_elements[technique]) == 1:
                                color_index = [0]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 2:
                                color_index = [0, 4]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 3:
                                color_index = [0, 4, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 4:
                                color_index = [0, 2, 4, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 5:
                                color_index = [0, 2, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 6:
                                color_index = [0, 1, 2, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 7:
                                color_index = [0, 1, 2, 3, 4, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 8:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 9:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 7, 8]
                            elif len(self.data_integration.number_of_SAR_elements[technique]) == 10:
                                color_index = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

                            for _, (subkey, subdata) in enumerate(orbit_data.items()):
                                if subkey in inner_keys.keys():
                                    showlegend = False
                                else:
                                    showlegend = True
                                    inner_keys[subkey]=color_index[len(inner_keys)]

                                color_for_data = data_colors[subdata.type][inner_keys[subkey]]

                                rates = 1000 if subdata.type == "DInSAR" else 1
                                if subdata.type == "DInSAR":
                                    max_rate.extend([max(subdata.data["DSP"] * rates)])
                                    min_rate.extend([min(subdata.data["DSP"] * rates)])
                                else:
                                    max_disp["ver"].extend([max(subdata.data["DSP"] * rates)])
                                    min_disp["ver"].extend([min(subdata.data["DSP"] * rates)])

                                fig.add_trace(
                                    go.Scatter(x=subdata.data.index, y=subdata.data["DSP"] * rates, mode='markers',
                                               name=subdata.sublabel,
                                               showlegend=showlegend, legendgroup=subdata.type,
                                               legendgrouptitle_text=subdata.type,
                                               marker=dict(color=color_for_data, size = 8)), row=row, col=col)
                                self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                        else:
                            showlegend = True if self.orbits.index(orbit) == 0 else False
                            rates = 1000 if orbit_data.type == "DInSAR" else 1
                            if orbit_data.type == "DInSAR":
                                max_rate.extend([max(orbit_data.data["DSP"] * rates)])
                                min_rate.extend([min(orbit_data.data["DSP"] * rates)])
                            else:
                                max_disp["ver"].extend([max(orbit_data.data["DSP"] * rates)])
                                min_disp["ver"].extend([min(orbit_data.data["DSP"] * rates)])

                            fig.add_trace(
                                go.Scatter(x=orbit_data.data.index, y=orbit_data.data["DSP"] * rates, mode='markers',
                                           name='',
                                           showlegend=showlegend, legendgroup=orbit_data.type,
                                           legendgrouptitle_text=orbit_data.type,
                                           marker=dict(color=data_colors[orbit_data.type][0], size = 8)), row=row, col=col)
                            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
                    if technique == "DInSAR":
                        for orbit in set(self.orbits).difference(set(data.keys())):
                            col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1
                            fig.add_trace(
                                go.Scatter(x=dates_range, y=pd.Series(dtype=object), mode='markers',
                                           showlegend=False), row=row, col=col)
                            self.add_vline(fig, timestamp_min_value, timestamp_max_value, row=row, col=col)
        if self.data_integration.mean_data_dict.get("DInSAR") is not None:
            row = 4 if ("SBAS" in self.sar_data_types or "PSI" in self.sar_data_types) else 3
            for orbit, orbit_data in self.data_integration.mean_data_dict.get("DInSAR").items():
                col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1

                max_rate.extend([max(orbit_data['forward_mean'])])
                min_rate.extend([min(orbit_data['forward_mean'])])

                fig.add_trace(go.Scatter(x=orbit_data['forward_mean'].index, y=orbit_data['forward_mean'], mode='lines',
                                         name=name_forward, showlegend=False, legendgroup="kalman",
                                         line=dict(width=5, color=data_colors["forward"])), row=row, col=col)
                if orbit_data.get('backward_mean') is not None:
                    max_rate.extend([max(orbit_data['backward_mean'])])
                    min_rate.extend([min(orbit_data['backward_mean'])])

                    fig.add_trace(
                        go.Scatter(x=orbit_data['backward_mean'].index, y=orbit_data['backward_mean'], mode='lines',
                                   name=name_backward, showlegend=False, legendgroup="kalman",
                                   line=dict(width=4, color=data_colors["backward"])), row=row, col=col)

        if self.data_integration.mean_data_dict.get("SAR_SBAS_PSI_MEAN") is not None:
            row = 3
            for orbit, orbit_data in self.data_integration.mean_data_dict.get("SAR_SBAS_PSI_MEAN").items():
                col = self.orbits.index(orbit) + 1 if self.number_of_orbits > 1 else 1

                max_disp["ver"].extend([max(orbit_data['forward_mean'].dropna())])
                min_disp["ver"].extend([min(orbit_data['forward_mean'].dropna())])

                fig.add_trace(
                    go.Scatter(x=orbit_data['forward_mean'].dropna().index, y=orbit_data['forward_mean'].dropna(),
                               mode='lines', name=name_forward, showlegend=False, legendgroup="kalman",
                               line=dict(width=5, color=data_colors["forward"])), row=row, col=col)

                if orbit_data.get('backward_mean') is not None:
                    max_disp["ver"].extend([max(orbit_data['backward_mean'].dropna())])
                    min_disp["ver"].extend([min(orbit_data['backward_mean'].dropna())])

                    fig.add_trace(
                        go.Scatter(x=orbit_data['backward_mean'].dropna().index, y=orbit_data['backward_mean'].dropna(),
                                   mode='lines', name=name_backward, showlegend=False, legendgroup="kalman",
                                   line=dict(width=4, color=data_colors["backward"])), row=row, col=col)

        # ORDER OF TRACES FOR LEGEND
        new_data = [trace for trace in fig.data if trace.name != name_forward] + [trace for trace in fig.data if
                                                                                  trace.name == name_forward]
        new_data = [trace for trace in new_data if trace.name != name_backward] + [trace for trace in new_data if
                                                                                   trace.name == name_backward]
        fig.data = new_data

        # CREATE Y RANGE
        max_disp_ver = self.find_max_value(max_disp["ver"])
        max_disp_hor = self.find_max_value(max_disp["hor"])
        min_disp_ver = self.find_min_value(min_disp["ver"])
        min_disp_hor = self.find_min_value(min_disp["hor"])

        min_rate = self.find_min_value(min_rate)
        max_rate = self.find_max_value(max_rate)

        range_ver = [min_disp_ver - additional_range * abs(max_disp_ver - min_disp_ver),
                     max_disp_ver + additional_range * abs(max_disp_ver - min_disp_ver)]
        range_hor = [min_disp_hor - additional_range * abs(max_disp_hor - min_disp_hor),
                     max_disp_hor + additional_range * abs(max_disp_hor - min_disp_hor)]
        range_rate = [min_rate - additional_range * abs(max_rate - min_rate),
                      max_rate + additional_range * abs(max_rate - min_rate)]

        min_range_value = 0.05
        if min(range_ver[0], range_hor[0]) > -min_range_value and max(range_ver[1], range_hor[1]) < min_range_value:
            range_ver = [-min_range_value, min_range_value]
            range_hor = [-min_range_value, min_range_value]

        # UPDATE X AND Y RANGE FOR GNSS DISPLACEMENT    
        fig.update_yaxes(range=range_hor,   row=1, col=1)
        fig.update_yaxes(range=range_hor,   row=1, col=2)
        fig.update_yaxes(range=range_ver,   row=1, col=3)
        fig.update_xaxes(range=dates_range, row=1)

        # UPDATE X AND Y RANGE FOR GNSS RATE
        fig.update_xaxes(range=dates_range, row=2)
        fig.update_yaxes(range=range_rate,  row=2)

        # UPDATE X AND Y RANGE FOR DInSAR OR PSI& SBAS
        fig.update_xaxes(range=dates_range, row=3)
        if rows == 4 and "DInSAR" in self.sar_data_types: 
            fig.update_yaxes(range=range_rate, row=3)
        else:
            fig.update_yaxes(range=range_ver,  row=3)

        # UPDATE X AND Y RANGE FOR DInSAR WITH PSI& SBAS
        fig.update_xaxes(range=dates_range, row=4)
        fig.update_yaxes(range=range_rate,  row=4)


        # UPDATE EVERY ANNOTATIONS -> FONT SIZE
        fig.update_annotations(font_size=24, font_color = 'black')

        layout_settings = {
            'title_text': f"MultiDEFusion: <b>{self.data_integration.station}</b>",
            'font': dict(family='Helvetica', size=20, color = 'black'),
            'height': 1400,
            'width': 1600,
            'showlegend': True,
            'margin' : dict(r=10,b=10),
            'legend': dict(orientation='h',
                           # groupclick="toggleitem",
                           itemsizing='constant',
                           bordercolor='black',
                           borderwidth=1,
                           yanchor="bottom",
                           y=vertical_postition['1'][1]+shift_legend,
                           xanchor="right",
                           x=1),
            'plot_bgcolor': 'white',
        }

        axis_settings = {
            'gridcolor': 'lightgray',
            'ticks': 'inside',
            'linecolor': 'black',
            'mirror': 'ticks',
            'color': 'black',
            'minor': dict(gridcolor='lightgray', gridwidth=0.1, ticks='inside', tickcolor='black'),
            'automargin': 'height+width+left+right',    
        }

        # UPDATE POSITION AND SETTINGS FOR GNSS DISPLACEMENT
        for i in range(1, 4):
            layout_settings[f'xaxis{i}'] = dict(domain=subplots_postition["3"][i - 1], showticklabels=False, hoverformat = '%d %b %Y',
                                                **axis_settings)
            layout_settings[f'yaxis{i}'] = dict(
                domain=vertical_postition['1'],
                title='<b>Displacement [m]</b>' if i == 1 else '',
                showticklabels=True if i == 1 or i == 3 else False,
                tickformat='.2f',
                zeroline=True,
                zerolinewidth=2,
                zerolinecolor='lightgray',
                hoverformat = '.3f',
                **axis_settings
            )
        # UPDATE POSITION AND SETTINGS FOR GNSS RATE
        for i in range(1, 4):
            layout_settings[f'xaxis{i + 3}'] = dict(domain=subplots_postition["3"][i - 1],
                                                    showticklabels=True, tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
            layout_settings[f'yaxis{i + 3}'] = dict(
                domain=vertical_postition['2'],
                title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                showticklabels=True if i == 1 or i == 3 else False,
                tickformat='.2f',
                zeroline=True,
                zerolinewidth=2,
                zerolinecolor='lightgray',
                hoverformat = '.1f',
                **axis_settings
            )

        if self.number_of_orbits == 3:
            subplots_postition_orbits = str(self.number_of_orbits) + "*"
        else:
            subplots_postition_orbits = str(self.number_of_orbits)

        table_vertical  = table_postition['GNSS']
        table_title_pos = shift_title_fig*5
        picker_position = custom_position['GNSS']

        if rows == 4:
            if "DInSAR" in self.sar_data_types and len(self.sar_data_types) == 1:
                table_vertical  = table_postition['DInSAR']
                table_title_pos = shift_title_fig*5
                picker_position = custom_position['DInSAR']
                for i in range(1, len(self.orbits) + 1):
                    layout_settings[f'xaxis{i + 6}'] = dict(
                        domain=subplots_postition[subplots_postition_orbits][i - 1],
                        tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                    layout_settings[f'yaxis{i + 6}'] = dict(
                        domain=vertical_postition['3*'],
                        title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                        showticklabels=True if i == 1 else False,
                        tickformat='.2f',
                        zeroline=True,
                        zerolinewidth=2,
                        zerolinecolor='lightgray',
                        hoverformat = '.1f',
                        **axis_settings
                    )

        if rows == 4:
            if "DInSAR" not in self.sar_data_types and len(self.sar_data_types) > 0:
                table_vertical  = table_postition['SBAS']
                table_title_pos = shift_title_fig
                picker_position = custom_position['SBAS']
                for i in range(1, len(self.orbits) + 1):
                    layout_settings[f'xaxis{i + 6}'] = dict(
                        domain=subplots_postition[subplots_postition_orbits][i - 1],
                        tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                    layout_settings[f'yaxis{i + 6}'] = dict(
                        domain=vertical_postition['3'],
                        title='<b>Displacement [m]</b>' if i == 1 else '',
                        showticklabels=True if i == 1 else False,
                        tickformat='.2f',
                        zeroline=True,
                        zerolinewidth=2,
                        zerolinecolor='lightgray',
                        hoverformat = '.3f',
                        **axis_settings
                    )

        if rows == 5:
            table_vertical  = table_postition['MSAR']
            table_title_pos = shift_title_fig
            picker_position = custom_position['MSAR']
            for i in range(1, len(self.orbits) + 1):
                layout_settings[f'xaxis{i + 6}'] = dict(domain=subplots_postition[subplots_postition_orbits][i - 1],
                                                        showticklabels=False, hoverformat = '%d %b %Y', **axis_settings)
                layout_settings[f'yaxis{i + 6}'] = dict(
                    domain=vertical_postition['3'],
                    title='<b>Displacement [m]</b>' if i == 1 else '',
                    showticklabels=True if i == 1 else False,
                    tickformat='.2f',
                    zeroline=True,
                    zerolinewidth=2,            
                    zerolinecolor='lightgray',
                    hoverformat = '.3f',
                    **axis_settings
                )
                layout_settings[f'xaxis{i + 6 + len(self.orbits)}'] = dict(
                    domain=subplots_postition[subplots_postition_orbits][i - 1],
                    tickformat='%b<br>%Y', hoverformat = '%d %b %Y', **axis_settings)
                layout_settings[f'yaxis{i + 6 + len(self.orbits)}'] = dict(
                    domain=vertical_postition['4'],
                    title='<b>Rate<br>[mm/day]</b>' if i == 1 else '',
                    showticklabels=True if i == 1 else False,
                    tickformat='.2f',
                    zeroline=True,
                    zerolinewidth=2,
                    zerolinecolor='lightgray',
                    hoverformat = '.1f',
                    **axis_settings
                )

        fig.update_layout(**layout_settings)

        fig.update_layout(xaxis=dict(matches='x'),
                          xaxis4=dict(matches='x'),
                          xaxis2=dict(matches='x2'),
                          xaxis5=dict(matches='x2'),
                          xaxis3=dict(matches='x3'),
                          xaxis6=dict(matches='x3'),
                          hovermode='x unified',
                          )

        fig.update_traces(hovertemplate='%{y} %{xother}')

        if self.data_integration.backward_df_xe is not None:
            max_total_values = self.find_max_total(self.data_integration.backward_df_xe)
            mean_rate = self.data_integration.backward_df_xe.mean()
            kalman_col = '  Kalman<br>Backward'
        else:
            kalman_col = ' Kalman<br>Forward'
            max_total_values = self.find_max_total(self.data_integration.forward_df_xe)
            mean_rate = self.data_integration.forward_df_xe.mean()


        fig.add_trace(go.Table(
            header=dict(values=[f"{kalman_col}", '     Max<br>  DEF [m]',  'Mean rate<br>  [m/year]'],
                        align='center',
                        fill_color = 'rgb(189, 215, 231)',
                        line_color='black',
                        font = dict(color = 'black', size = 24)),
            cells =dict(values=[['North', 'East', 'Up'], max_total_values[disp_cols].apply(lambda x: f'{x:.3f}'), (mean_rate[rate_cols]*365.25).apply(lambda x: f'{x:.3f}')], 
                        align='center', 
                        height=41.5,
                        fill_color = 'white',
                        line_color='black',
                        font = dict(color = 'black', size = 24))
            ), row=rows, col=1)

        fig.update_traces(
            domain={'y': table_vertical, 'x': subplots_postition['3'][1]},
            selector={'type': 'table'})

        for annotation, domain in zip(fig['layout']['annotations'][:3], subplots_postition["3"]):
            annotation['x'] = (domain[0] + domain[1]) / 2
            annotation['y'] = vertical_postition['1'][1]+shift_title_fig

        if self.number_of_orbits == 3:
            subplots_pos = subplots_postition["3*"]
        elif self.number_of_orbits in [1, 2]:
            subplots_pos = subplots_postition[str(self.number_of_orbits)]

        if rows > 3:
            for annotation, domain in zip(fig['layout']['annotations'][3:], subplots_pos):
                annotation['x'] = (domain[0] + domain[1]) / 2
                annotation['y'] = vertical_postition['3'][1]+shift_title_fig

        fig.add_annotation(
            x = mean(subplots_postition['3'][1]),
            y = table_vertical[1]+table_title_pos,
            xref = "paper",
            yref = "paper",
            showarrow=False,
            font_size = 25,
            font_color = 'black',
            text = "<b>Relevant values</b>")

        fig.add_annotation(
            x = mean(subplots_postition['3'][1]),
            y = 0.005,
            xref = "paper",
            yref = "paper",
            showarrow=False,
            font_family = 'Helvetica',
            font_size = 15,
            font_color = 'black',
            text = "The Kalman filter displacements and rates shown for InSAR orbits in the Line of Sight (LOS) domain were determined based on the mean heading and incidence angle values.")

        #DASH PART
        app = dash.Dash(__name__)
        container1 = html.Div([
            dcc.Graph(
                id='subplot-graph',
                figure = fig,
                config = {
                    'toImageButtonOptions': {'format': 'svg', 'filename': 'MultiDEFusion_'+self.data_integration.station},
                    'displaylogo': False,
                    'showEditInChartStudio': True,
                    'plotlyServerURL': "https://chart-studio.plotly.com",
                    'modeBarButtonsToRemove': ['select', 'lasso2d', 'autoScale'],
                    'modeBarButtonsToAdd': ['drawline', 'drawcircle', 'drawrect', 'eraseshape', 'sendDataToCloud']
                    }
                ),
            ])

        container2 = html.Div([
            html.H2('Customise dates range',
                    style={'fontsize': '25px',
                           'margin-bottom': '5px',
                           'margin-left': '65px',}),

		    dcc.DatePickerRange(
				id='date_range',
				display_format='DD/MM/YYYY',
				show_outside_days = True,
				start_date=dates_range[0],
				end_date=dates_range[1],
                number_of_months_shown=2,
                style={'border': '2px solid black',
                       'margin-bottom': '10px',
                       'vertical-align': 'middle',
                       'display': 'inline-block'},
			),

            html.Button('Restore default',
                        id='reset_dates',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '45px', 
                               'width': '100px', 
                               'margin-left': '10px',
                               'margin-bottom': '10px',
                               'vertical-align': 'middle',
                               'display': 'inline-block'}),

            html.Div(id='output_x_range',
                     style={'fontsize': '15px',
                            'color': 'red'}),

            html.H2('Customise values range',
                    style={'fontsize': '25px',
                           'margin-bottom': '5px',
                           'margin-left': '60px'}),

            html.Div([
            dcc.Dropdown(
                id = 'show_or_hide',
                options=[
                    {'label': 'Horizontal range [m]', 'value': 'hor'},
                    {'label': 'Vertical & LOS range [m]', 'value': 'ver'},
                    {'label': 'Rate range [mm/day]', 'value': 'rate'}],
                value = 'hor',
                clearable = False,
                style={'width': '286px',
                       'font-size': '20px', 
                       'border': '0.2px solid black',
                       'border-radius': '0',
                       'height': '40px', 
                       'vertical-align': 'middle',
                       'display': 'inline-block'},
            ),

            html.Button('Sync ranges',
                        id='fit_ranges',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '38px', 
                               'width': '100px',
                               'margin-left': '10px',
                               'vertical-align': 'middle',
                               'display': 'inline-block'}
            ),
            ]),

            html.Div([
                html.Div(id = 'hor_options', children=[
                dcc.Input(
                id = 'hor_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_hor[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'hor_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_hor[1])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                )
            ],
            style={'display': 'block',
                   'margin-top': '5px',
                   'margin-bottom': '10px'},
            ),

            html.Div(id = 'ver_options', children=[
                dcc.Input(
                id = 'ver_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_ver[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'ver_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.001,
                value = float("{:.3f}".format(range_ver[1])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                )
            ],
            style={'display': 'block',
                   'margin-bottom': '10px'},
            ),

            html.Div(id = 'rate_options', children=[
                dcc.Input(
                id = 'rate_min',
                placeholder = 'Minimum value',
                type='number',
                step = 0.1,
                value = float("{:.1f}".format(range_rate[0])),
                style = {'font-size': '17px',
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

                dcc.Input(
                id = 'rate_max',
                placeholder = 'Maximum value',
                type='number',
                step = 0.1,
                value = float("{:.1f}".format(range_rate[1])),
                style = {'font-size': '17px', 
                         'border': '1px solid black',
                         'height': '30px', 
                         'width': '138px'}
                ),

            ],
            style={'display': 'block',
                   'margin-bottom': '10px'},
            )
            ], style={'display': 'inline-block',
                      'vertical-align': 'middle'}),


            html.Button('Restore default',
                        id='reset_values',
                        n_clicks=0,
                        style={'fontsize': '20px',
                               'font-weight': 'bold',
                               'height': '38px', 
                               'width': '100px',
                               'margin-left': '10px',
                               'display': 'inline-block',
                               'vertical-align': 'middle',}
            ),


            html.Div(id='output_y_range',
                     style={'fontsize': '15px',
                            'color': 'red'}
                     ),
        ], 
        style={'position': 'absolute', 
               'top': f'{picker_position}px', 
               'left': '145px', 
               'width': 'fit-content',
               'fontFamily': 'Helvetica',
               'color': 'black', 
               }
        )

        app.layout = html.Div([container1, container2])

        @app.callback(
            Output('hor_options', 'style'),
            Output('ver_options', 'style'),
            Output('rate_options', 'style'),
            Input('show_or_hide', 'value'))

        def show_hide_element(visibility_state):
            if visibility_state == 'hor':
                return {'display': 'block'}, {'display': 'none'}, {'display': 'none'}
            elif visibility_state == 'ver':
                return {'display': 'none'}, {'display': 'block'}, {'display': 'none'}
            else:
                return {'display': 'none'}, {'display': 'none'}, {'display': 'block'}

        @app.callback(
           Output('subplot-graph', 'figure'),
           Output('output_x_range', 'children'),
           Output('output_y_range', 'children'),
           [Input('date_range', 'start_date'),
            Input('date_range', 'end_date'),
            Input('hor_min', 'value'), 
            Input('hor_max', 'value'),
            Input('ver_min', 'value'), 
            Input('ver_max', 'value'),
            Input('rate_min', 'value'), 
            Input('rate_max', 'value')]
           )

        def update_subplot(start_date, end_date, hor_min, hor_max, ver_min, ver_max, rate_min, rate_max):

            warning_dates = None
            if end_date <= start_date and end_date is not None and start_date is not None:
                warning_dates = 'The end date must be greater than the start date!'
            if warning_dates == None:
                fig.update_xaxes(range=(start_date, end_date))

            warning_values = None
            if hor_min is not None and hor_max is not None and hor_max <= hor_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if ver_min is not None and ver_max is not None and ver_max <= ver_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if rate_min is not None and rate_max is not None and rate_max <= rate_min:
                warning_values = 'Maximum value must be greater than minimum!'
            if warning_values == None:                
                # UPDATE Y RANGE FOR GNSS DISPLACEMENT    
                fig.update_yaxes(range=[hor_min, hor_max], row=1, col=1)
                fig.update_yaxes(range=[hor_min, hor_max], row=1, col=2)
                fig.update_yaxes(range=[ver_min, ver_max], row=1, col=3)

                # UPDATE X AND Y RANGE FOR GNSS RATE
                fig.update_yaxes(range=[rate_min, rate_max], row=2)

                # UPDATE X AND Y RANGE FOR DInSAR OR PSI & SBAS
                if rows == 4 and "DInSAR" in self.sar_data_types: 
                    fig.update_yaxes(range=[rate_min, rate_max], row=3)
                else:
                    fig.update_yaxes(range=[ver_min, ver_max], row=3)

                # UPDATE X AND Y RANGE FOR DInSAR WITH PSI& SBAS
                fig.update_yaxes(range=[rate_min, rate_max], row=4)

            return fig, warning_dates, warning_values


        @app.callback(
            Output('date_range', 'start_date'),
            Output('date_range', 'end_date'),
            Input('reset_dates', 'n_clicks')
        )

        def reset_date_range(n_clicks):
            return dates_range[0], dates_range[1]

        @app.callback(
          [Output('hor_min', 'value'), 
            Output('hor_max', 'value'),
            Output('ver_min', 'value'), 
            Output('ver_max', 'value'),
            Output('rate_min', 'value'), 
            Output('rate_max', 'value')],
            Input('reset_values', 'n_clicks'),
            Input('fit_ranges', 'n_clicks'),
            prevent_initial_call=True
          )

        def reset_fit_range(btn1, btn2):
            min_range = float("{:.3f}".format(min(range_ver[0], range_hor[0])))
            max_range = float("{:.3f}".format(max(range_ver[1], range_hor[1])))
            if 'reset_values' == ctx.triggered_id:
                return float("{:.3f}".format(range_hor[0])), float("{:.3f}".format(range_hor[1])), float("{:.3f}".format(range_ver[0])), float("{:.3f}".format(range_ver[1])),  float("{:.1f}".format(range_rate[0])), float("{:.1f}".format(range_rate[1]))
            if 'fit_ranges' == ctx.triggered_id:
                return min_range, max_range, min_range, max_range, float("{:.1f}".format(range_rate[0])), float("{:.1f}".format(range_rate[1]))


        print("MultiDEFusion procedure accomplished.\n")
        if __name__ == 'multidefusion.results':
            app.run_server(debug=True, host="localhost", port=self.data_integration.port, use_reloader=False);
            webbrowser.open(f'http://localhost:{self.data_integration.port}')
            print("___________________________________________________________")

find_max_total(df) staticmethod

Find the maximum value (positive or negative) from each column from a set of dataframe.

Parameters:

Name Type Description Default
df

dataframe

required

Returns:

Type Description

Maximum value from from each column from a set of dataframe.

Source code in multidefusion\results.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@staticmethod
def find_max_total(df):
    """
    Find the maximum value (positive or negative) from each column from a set of dataframe.

    Args:
        df: dataframe

    Returns:
        Maximum value from from each column from a set of dataframe.
    """
    return df.apply(lambda col: col.max() if col.max() >= -col.min() else col.min(), axis=0)

find_max_value(*lists) staticmethod

Find the maximum value from a set of lists.

Parameters:

Name Type Description Default
*lists

Variable number of lists to find the maximum value from.

()

Returns:

Type Description

Maximum value from the provided lists.

Source code in multidefusion\results.py
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
@staticmethod
def find_max_value(*lists):
    """
    Find the maximum value from a set of lists.

    Args:
        *lists: Variable number of lists to find the maximum value from.

    Returns:
        Maximum value from the provided lists.
    """
    if not lists:
        return None
    flattened_list = [item for sublist in lists for item in sublist]
    return max(flattened_list)

find_min_value(*lists) staticmethod

Find the minimum value from a set of lists.

Parameters:

Name Type Description Default
*lists

Variable number of lists to find the minimum value from.

()

Returns:

Type Description

Minimum value from the provided lists.

Source code in multidefusion\results.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
@staticmethod
def find_min_value(*lists):
    """
    Find the minimum value from a set of lists.

    Args:
        *lists: Variable number of lists to find the minimum value from.

    Returns:
        Minimum value from the provided lists.
    """
    if not lists:
        return None
    flattened_list = [item for sublist in lists for item in sublist]
    return min(flattened_list)