integration module¶
DataIntegration
¶
Class for integrating and processing different types of data using the Kalman filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
station_name |
str
|
The name of the station. |
required |
path |
str
|
The base path where data files are located. |
required |
noise |
float
|
The noise parameter for the Kalman filter. |
required |
port |
int
|
The port is necessary for parallel displaying of subsequent integration results on localhost. |
required |
Attributes:
Name | Type | Description |
---|---|---|
station |
str
|
The name of the station. |
path |
str
|
The base path where data files are located. |
data_dict |
Dict[str, Dict[str, Any]]
|
A dictionary containing data objects organized by data type and label. More information about attributes can be found in the API Reference datainterface module section. |
mean_data_dict |
Dict[str, Dict[str, Any]]
|
Dictionary to store averaged data after integration is performed. |
predicted_state_and_variance |
Dict[date, Dict[str, Any]]
|
Predicted state and variance for each date. |
forward |
Dict[date, Dict[str, Any]]
|
Filtered state and variance for each date. |
backward |
Dict[date, Dict[str, Any]]
|
Backward estimated state and variance for each date. |
latest_date_all_data |
Optional[date]
|
The latest date among all data types. |
earliest_date_gnss |
Optional[date]
|
The earliest date among GNSS data. |
noise |
float
|
The noise parameter for the Kalman filter [mm/day^2 ]. |
forward_df_xe |
DataFrame
|
Converted data to pd.DataFrame from forward for xe keys. |
backward_df_xe |
DataFrame
|
Converted data to pd.DataFrame from backward for xe keys. |
Source code in multidefusion\integration.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
compute_mean_LOS_orbit()
¶
Computes the mean Line-of-Sight (LOS) orbit for SAR data, including PSI, SBAS, and DInSAR techniques. Populates container_head_psi_sbas, container_inc_psi_sbas, container_head_DInSAR, and container_inc_DInSAR with HEAD_ANG and INC_ANG data for each orbit.
Returns: None
Source code in multidefusion\integration.py
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
|
connect_data()
¶
Connects data objects based on data types and labels.
Source code in multidefusion\integration.py
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
|
create_data_object(data_type, file_path)
staticmethod
¶
Creates a data object based on the data type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_type |
str
|
The type of data ("GNSS" or "SAR"). |
required |
file_path |
str
|
The path to the data file. |
required |
Returns:
Name | Type | Description |
---|---|---|
Any |
Any
|
An instance of the corresponding data class. |
Source code in multidefusion\integration.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
|
extract_data_type(file_name)
staticmethod
¶
Extracts data type from the file name.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_name |
str
|
The name of the data file. |
required |
Returns:
Name | Type | Description |
---|---|---|
str |
str
|
The extracted data type ("GNSS" or "SAR"). |
Source code in multidefusion\integration.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|
get_data(technique, type)
¶
Retrieves and flattens data for a specified SAR technique and type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
technique |
str
|
SAR technique (e.g., "SAR"). |
required |
type |
str
|
Data type (e.g., "PSI"). |
required |
Returns:
Name | Type | Description |
---|---|---|
List |
Flattened list of data values for the specified technique and type. |
Source code in multidefusion\integration.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
|
get_earliest_gnss_date()
¶
Updates the earliest date among GNSS data.
Source code in multidefusion\integration.py
377 378 379 380 381 382 |
|
get_latest_date_from_all_data()
¶
Updates the latest date among all data types.
Source code in multidefusion\integration.py
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
|
kalman_based_bias_removal(data_obj, date)
¶
Applies Kalman-based bias removal to SAR data.
This method takes a data object and a date, extracts relevant information, performs Kalman-based bias removal, and updates the data object with the corrected values.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_obj |
DataObject
|
Object containing SAR data. |
required |
date |
datetime
|
Date for bias removal. |
required |
Returns:
Type | Description |
---|---|
None |
Source code in multidefusion\integration.py
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
|
kalman_forward()
¶
Performs the forward pass of the Kalman filter.
Source code in multidefusion\integration.py
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
|
kalman_forward_backward()
¶
Performs the forward-backward pass of the Kalman filter.
Source code in multidefusion\integration.py
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
|
measurement_update(xp, Pp, z, R, A)
staticmethod
¶
Measurement update step of the Kalman filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xp |
ndarray
|
Predicted state. |
required |
Pp |
ndarray
|
Variance matrix. |
required |
z |
ndarray
|
Measurement vector. |
required |
R |
ndarray
|
Measurement variance matrix. |
required |
A |
ndarray
|
Design matrix. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]: |
ndarray
|
Updated estimated state, variance, measurement residual, measurement variance, and Kalman gain. |
Source code in multidefusion\integration.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
|
remove_bias_in_sar_data()
¶
Removes bias in SAR data based on GNSS data.
This method iterates through the SAR data stored in the 'data_dict' attribute and applies bias reduction to each dataset, excluding the 'DInSAR' technique. The bias reduction is performed using GNSS data up to the earliest date specified by 'earliest_date_gnss'.
Note: - Bias reduction is applied to each dataset within the SAR data structure.
Returns: None
Source code in multidefusion\integration.py
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
sar_data_validation()
¶
Validates SAR data and applies bias reduction if necessary.
This method iterates through SAR data obtained from different techniques (PSI and SBAS), checks if the oldest date in the data is greater than the earliest GNSS date, and applies bias reduction if the condition is met.
Returns:
Type | Description |
---|---|
None |
Source code in multidefusion\integration.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
time_update(xe, Pe, Phi, S)
staticmethod
¶
Time update step of the Kalman filter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
xe |
ndarray
|
Predicted state. |
required |
Pe |
ndarray
|
Variance matrix. |
required |
Phi |
ndarray
|
Transition matrix. |
required |
S |
ndarray
|
Process noise matrix. |
required |
Returns:
Type | Description |
---|---|
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: Updated predicted state and variance. |
Source code in multidefusion\integration.py
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
|